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Abstract 

 

The proposed correlation coefficient better characterize the statistical independence of two random variables that are a 

linear mixture of two independent sources. This correlation coefficient can be calculated with analytical relations or 

with the known algorithms of independent components analysis (ICA). The value of the correlation coefficient is zero 

when the random variables are a statistically independent and it is one when these are fully dependent. 
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INTRODUCTION  

 
The dependences between two random variables   
and   is represented generally by a correlation 
relation and the commonly used is the Pearson 
correlation coefficient[1]: 
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where E is the expectation operator and    is the 
standard deviation of a random variable  :  
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The correlation coefficient (1) has a simpler 
relation: 
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if the random variables   and  are normalized: 
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The simplest situation is when x1, x2 are a linear 
mixture of two statistically independent 
normalized random variables s1, s2 named 
sources: 

1 11 1 12 2 2 21 1 22 2,a a a ax s s x s s
 (5) 

In this case the correlation coefficient between 
x1, x2 is: 

 1 2 11 21 12 22, a a a ax x  (6) 

Assuming that the unit vectors along the x,y axis 
corresponds to s1, s2 and x1, x2 are given by (5) 

then x1 can be represented in a  2 space by the 
vector [a11, a12] and x2 by the vector [a21, a22]. 
With this representation the correlation 
coefficient (6) can be represented geometrically 
as the scalar product between x1 and x2.   
 

 

Fig. 1.  The dependence of x1, x2 on s1, s2. On the x ax 

that corresponds to s1, the coefficients a11, a12 are 

represented. On the y ax that corresponds to s s2, the 

coefficients a21, a22 are represented. 

Due to the fact that x1, x2 are normalized then 
a11

2
+a12

2
=1 and a21

2
+ a22

2
=1. In this case the 

relations (5) can be rewritten as: 
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where the ,  are the angles formed by x1, x2 
with the x ax respectively. 
Using (7) the correlation coefficient takes a very 
simple trigonometric form: 

1 2
, cos( )x x

 (8) 

In the case when both x1, x2 have a Gaussian 
distribution or any one of the coefficients a11, 
a12 a21 and a22 equals to zero, then the absolute 
value of the correlation coefficient measure the 
statistical dependence between the random 
variables x1, x2. In this case if the correlation 
coefficient is zero then x1, x2 are statistically 
independent. In the other cases the correlation 
coefficient may not correctly show the statistical 
dependence between x1 and x2.  
For example the Pearson’s correlation 
coefficient expressed by Eq. (8) is zero in the 
case when the random variables are 
“orthogonal”: 

,
2

k k   (9) 

In this case the variables x1, x2 are not statistical 
independent if in (8)   +k /2 and quite 
dependent in the particular case when  = /4 
and  = + /2: 
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MATERIAL AND METHOD  

 

The random variables x1, x2 given by (5), are 
independent, when a11a12 = 0 and a21a22 = 0. In 
this case, but not only, the Pearson correlation 
coefficient (6) is zero. It would be therefore 
useful to provide an indicator, which is different 
from zero when the variables x1 and x2 are 
dependent but the Pearson coefficient is zero. 
The new correlation coefficient that we propose 
is defined with the following formula: 

1 2 11 21 12 22
( , )R a a a ax x  (11) 

The value of R is zero only when the random 
variables (5) are statistical independent and one 
when these are fully dependent. It has be noted 
with the Latin letter R similar with the 
correlation coefficient that is usually noted with 
the Greek letter .  
By using (7) the correlation coefficient R can be 
expressed as: 

1 2
( , ) max cos( ) , cos( )R x x    (12) 

It can be noticed that the Pearson correlation 
coefficient expressed as in Eq.(8) is the same 
with R when: 

cos( ) cos( )  (13) 

On Fig. 2 is represented the particular case 
when x1, x2 are orthogonal = +(2k+1) /2. In 
this case the Pearson’s correlation coefficient 
(8) is zero but, R may vary from 0 to 1: 

1 2( , ) sin(2 ) , (2 1) ,
2

R k kx x     (14) 

 
Fig. 2.  The dependence of two orthogonal random 

variables x1, x2 on s1, s2. The x, y axis corresponds to s1, 
s2. 

When  = /4 then R=1 and x1, x2 are in the 
most dependent situation. Other particular cases 
are when R=1/2 when  = /12 and R= 3/2 
when  = /6. 
The random variables x1, x2 are fully dependent 
and R=1 when: 
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The correlation coefficient R can be calculated 
by Eq. (11) if x1, x2 are separated into 
independent components by using an 
independent components analysis (ICA) 
algorithm [2-4].  
R may be calculated also with Eq. (12) in which 
case, what is needed is, to evaluate cos( + ), 
cos( - ) being known via(8).  
To compute R with (12) is necessary to know 

the value of:  
 1 2( , ) cosr x x   (16) 

Analytical solution for r(x1, x2) is: 

2 40 22 04

40 22 04

2
cos

2

k k k
t

k k k
  (17) 

where: 

 

4 4

40 1 0

2

2

2 22

2

1

43, 3,

1

k E k E

k E

o o

o o

        (18) 

Eqs. (17), can be obtained only when the 
following condition is fulfilled: 
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For a Gaussian source E[s4]= 3 and in this case 
if both sources  s1, s2 are Gaussian (19) is not 
fulfilled. If for one of the sources E[s1

4
]<3 and 

for the other E[s2
4
]>3 such as (19) is not 

fulfilled then the solution cannot be calculated 
with (17).  Also in the case when one of the 
sources are a mixture of two random variables 
such as E[s1

4
]=3  and the other source is or not 

Gaussian but for it also E[s2
4
]=3  then the 

solution cannot be computed with (17).   
When (19) is fulfilled R can be calculated 
knowing tan(t) obtained with the Comon’s 
relation [5] or with the alternative Comon’s 
formula (ACF)[8,3,14]: 
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where: 
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The best results are obtained with the following 
relation: 
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The above relation is known as the approximate 

maximum likelihood (AML) estimator [10-
12,5]. This relation can also be obtained by 

combining E[o1o2
3
] and E[o1

3
o2. Additionally 

the condition (19) need to be fulfilled. 
 

RESULTS AND DISCUSSIONS 

 

R corrects the Pearson’s correlation coefficient 
only when all the coefficients a11, a12, a21 and 
a22 in (5) are different from zero.  If one of these 
coefficients equal zero then the system (5) 
reduces to: 

1 1 2 21 1 22 2, a ax s x s s  (23) 

and the two correlation coefficients gives the 
same result. 
The correlation matrix  and R between the 
changing rates of different currency are 
presented in the Tab. 1 and 2 respectively. The 
difference between  and R is presented in 
Table 3. 
A general remark is that there are enough cases 
where  has been corrected by R to justify the 
use of the new correlation coefficient. In this 
example the corrected correlation R has a 
greater value than . 

TABLE 1.CORRELATION MATRIX 
 gold $ USA  €   UK  f Sw $ Ca $ Au 

gold 0.996 0.953 0.230 0.854 0.860 0.940 0.916 

$ USA 0.953 0.996 0.196 0.833 0.820 0.964 0.877 

 €  0.230 0.196 0.996 0.562 0.479 0.085 0.187 

 UK  0.854 0.833 0.562 0.996 0.915 0.765 0.801 

f Sw 0.860 0.820 0.479 0.915 0.996 0.785 0.878 

$ Ca 0.940 0.964 0.085 0.765 0.785 0.996 0.927 

$ Au 0.916 0.877 0.187 0.801 0.878 0.927 0.996 

 

TABLE 2.CORRECTED CORRELATION MATRIX 

 gold $ USA  €   UK  f Sw $ Ca $ Au 

gold 0.996 0.983 0.286 0.999 0.906 0.940 0.954 

$ USA 0.983 0.996 0.279 1.000 0.996 0.964 0.977 

 €  0.286 0.279 0.996 0.562 0.479 0.085 0.249 

 UK  0.999 1.000 0.562 0.996 0.993 0.984 1.000 

f Sw 0.906 0.996 0.479 0.993 0.996 0.999 0.969 

$ Ca 0.940 0.964 0.085 0.984 0.999 0.996 1.000 

$ Au 0.954 0.977 0.249 1.000 0.969 1.000 0.996 

 

TABLE 3.THE DIFFERENCE BETWEEN THE TWO 

CORRELATION COEFFICIENTS 
 gold $ 

USA  

 €   UK  f Sw $ Ca $ Au 

gold 0.000 -
0.030 

-
0.056 

-
0.145 

-
0.046 

0.000 -
0.039 

$ 

USA  

-
0.030 

0.000 -
0.083 

-
0.167 

-
0.176 

0.000 -
0.100 

 €  -
0.056 

-
0.083 

0.000 0.000 0.000 0.000 -
0.062 

 UK  -
0.145 

-
0.167 

0.000 0.000 -
0.078 

-
0.219 

-
0.199 

f Sw -
0.046 

-
0.176 

0.000 -
0.078 

0.000 -
0.214 

-
0.090 

$ Ca 0.000 0.000 0.000 -
0.219 

-
0.214 

0.000 -
0.073 

$ Au -
0.039 

-
0.100 

-
0.062 

-
0.199 

-
0.090 

-
0.073 

0.000 

 

As was expected there are also a lot of cases 
where the data structure has the simple form as 
in (23) which case the two correlation 
coefficients gives the same or very close results.  
For example in the 5th

 row of table 3 the 
dependence of the Canadian $ on gold, USA $ 
and € has a simple structure but, the dependence 
on the  UK and Swiss franc is complex it 
impose the use of the new correlation 
coefficient. 
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